BIOSYNTHESIS OF PISATIN: EXPERIMENTS WITH ENANTIOMERIC PRECURSORS

STEPHEN W. BANKS and PAUL M. DEWICK

Department of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, U.K.

(Received 29 November 1982)

Key Word Index—Pisum sativum; Leguminosae; phytoalexin; pterocarpan; isoflavonoid; pisatin; biosynthesis.

Abstract—Feeding experiments in cupric chloride-treated Pisum sativum pods and seedlings have demonstrated the preferential incorporation of (+)-(6aS,11aS)- $[^3H]$ maackiain over (-)-(6aR,11aR)- $[^{14}C]$ maackiain into (+)-(6aR,11aR)-pisatin, establishing that the 6a-hydroxylation of pterocarpans proceeds with retention of configuration. (+)-(6aR,11aR)-6a-hydroxymaackiain was similarly incorporated much better than (-)-(6aS,11aS)-6a-hydroxymaackiain. Where (-)-isomers were incorporated, optical activity measurements on the pisatin produced indicated significant synthesis of (-)-pisatin as well as the normal (+)-pisatin. 7,2'-Dihydroxy-4',5'-methylenedioxyisoflava-3-ene and both enantiomers of 7,2'-dihydroxy-4',5'-methylenedioxyisoflavan were poor precursors of pisatin.

INTRODUCTION

Feeding experiments in cupric chloride-treated pea (Pisum sativum) tissues [1] have demonstrated the excellent incorporations of (\pm) -(6aS, 11aS + 6aR, 11aR)- $[^{14}$ C]maackiain (3 and 7) and (+)-(6aR, 11aR)- $[^{14}$ C]6ahydroxymaackiain (4) into the 6a-hydroxypterocarpan phytoalexin (+)-(6aR, 11aR)-pisatin (5), establishing that pisatin is produced by 6a-hydroxylation of maackiain followed by methylation. Although racemic maackiain was employed in these studies, it is likely that the 6ahydroxylation step occurs with retention of configuration at C-6a, since an inversion process would necessitate the additional inversion at C-11a, pterocarpans having a Zfused ring system [2, 3]. In this case, only (+)-(6aS, 11aS)maackiain (3) would have served as the precursor of (+)pisatin (5). However, the significant (1-9%) incorporation of (-)-(6aR, 11aR)- $[^{14}C]$ maackiain (7) into pisatin [4] demonstrated that pea tissue was also able to utilize this enantiomer, but analysis of the phytoalexin showed this was converted into (-)-(6aS, 11aS)-pisatin (9) rather than the normal (+)-isomer [4]. With these observations, and the knowledge that (-)-(ball, 1/all)-maackiam (7) functions as a minor phytoalexin of P. sativum [4, 5] we decided to study further the biosynthesis of pisatin from enantiomeric maackiain precursors labelled with ³H or ¹⁴C. The results demonstrate that the biosynthetic precursor of (+)-pisatin is almost certainly (+)-maackiain, and that the 6a-hydroxylation occurs with retention of configuration at C-6a.

RESULTS AND DISCUSSION

Feeding experiments

Feeding experiments with radioactive labelled precursors were performed in 7-day-old Pisum sativum seedlings or young partially-expanded pods from gardengrown plants. As previously [1], phytoalexin synthesis was induced by treating the roots of seedlings with dilute aqueous cupric chloride, or by injecting a similar solution into the pods. After 12 hr, this induction solution was replaced by a solution of the precursor, and the plant tissue was worked-up after a 36 hr metabolism period. Pisatin was isolated and purified as previously described [1]

In a series of experiments (Table 1), (+)- $\lceil ^{3}H \rceil$ maackiain was compared with $(-)-\lceil ^{14}C \rceil$ maackiain as a precursor of pisatin, either in single-labelled comparative feedings, or together as the racemate in doublelabelled experiments. In pods, (+)-maackiain was a better precursor than (-)-maackiain, and when led together, the ${}^{3}H:{}^{14}C$ ratio increased significantly (4.7 \rightarrow 30). The incorporations of tritiated precursors must be regarded as minimum values, since a similar feeding of tritiated (-)maackiain (experiment ii) showed a loss of 50% of the 3H label due to biological exchange (see later). If this were general, then a doubling of the 3H figures would be appropriate, stressing further the preferred role of (+)maackiain as a precursor of (+)-pisatin. Checks of the optical activities of the pisatin produced indicated the synthesis of significant amounts of (-) pisatin in those feedings involving (-)-maackiain.

With seedling tissue, the results were less clear-cut, and although results almost identical to the pod studies were obtained in some of the experiments (v and vi), the ability of the plant to metabolize (-)-maackiain was quite marked. Thus, in single- and double-labelling experiments (iv), (-)-maackiain appeared a better precursor than (+)-maackiain, although after correcting for loss of ³H, incorporation levels were very similar. The presence of (-)-maackiain in the feeding solution again resulted in the production of some (-)-pisatin, as indicated by the lower specific rotations recorded. Overall though, there can be little doubt that (+)-maackiain is the precursor of (+)-pisatin, and that the 6a-hydroxylation must, therefore, proceed with retention of configuration.

In the earlier feedings [1], (+)-6a-hydroxymaackiain (4) had proved to be an extremely efficient biosynthetic

Table 1. Incorporation of (+)- and (-)-maackiain into pisatin in cupric chloride-treated Pisum sativum*

	Pisatin produced			% incorporation (Dilution)		Change in
Experiment†	Maackiain fed	$(\mu g/g)$	$[\alpha]_D$ (EtOH)‡	³ H	¹⁴ C	³ H: ¹⁴ C ratio
(i) P	(+)-[³ H]	162	+ 278°	4.7 (320)		
	(-)-[¹⁴ C]	97	$+207^{\circ}$		1.3 (830)	
	$(+)-[^{3}H]+(-)-[^{14}C]$	118	+ 263°	8.0 (76)	1.0 (480)	$4.7 \rightarrow 30$
(ii) P	$(+)-[^{3}H]+(-)-[^{14}C]$	180	+ 276°	5.4 (320)	0.84(2170)	$4.7 \to 30$
	$(-)-[^{3}H]+(-)-[^{14}C]$	167	+ 265°	0.84(210)	1.67(1060)	$5.4 \rightarrow 2.7$
(iii) P	$(+)$ - $\begin{bmatrix} 3H \end{bmatrix}$	99		3.6 (390)		******
	$(-)$ -[14 C]	47			6.7 (140)	
(iv) S	$(+)$ - $[^3H]$	70	+ 289°	2.2 (540)	the state	mm + ,+
	$(-)-[^{14}\bar{C}]$	68	+ 250°		6.2 (200)	
	$(+)-[^{3}H]+(-)-[^{14}C]$	61	+ 221°	4.7 (220)	7.5 (130)	$5.2 \rightarrow 3.2$
(v) S	$(+) \cdot [^{3}H] + (-) \cdot [^{14}C]$	92	TMA Security	2.0 (260)	0.27(1850)	$5.4 \rightarrow 42$
	$(-)-[^{3}H]+(-)-[^{14}C]$	81	+ 255°	0.40(2500)	0.50(1740)	$5.1 \rightarrow 4.3$
(vi) S	(+) - [3H] + (-) - [14C]	70	+ 208°	3.7 (140)	0.46(2940)	$4.7 \rightarrow 39$
	$(-)-[^{3}H]+(-)-[^{14}C]$	57	+ 217°	0.14(2430)	0.24(1430)	$6.7 \rightarrow 3.9$

^{*}Induction period 12 hr, feeding period 36 hr.

precursor of pisatin with incorporations of 18-27%. The utilization of (-)-maackiain in pisatin biosynthesis made it desirable to test also the precursor efficiency of (-)-6a-hydroxymaackiain (8). Thus, (+)- and (-)-[14 C]6a-hydroxymaackiain were separately fed in comparative experiments with pod tissue, and the results are presented in Table 2. Although the (-)-isomer was significantly incorporated, the extent (1-3%) was very low indeed compared with that of the (+)-isomer (25-34%). In these cases also, the optical rotation of the pisatin formed was lower than usual, and the incorporations must thus

represent incorporations into (-)-pisatin.

A series of studies in *Medicago sativa* and *Trifolium pratense* [6] had demonstrated the interconversions of pterocarpans and 2'-hydroxyisoflavans. Whilst no isoflavan derivatives have been reported in *P. sativum*, and it was considered unlikely that isoflavans had any role in the biosynthesis of 6a-hydroxypterocarpans, the two enantiomers of [3H]-7,2'-dihydroxy-4',5'-methylene-dioxyisoflavan (10 and 11) were tested as precursors (Table 3). Even after allowing for loss of ³H label by analogy with maackiain precursors, the incorporations

Table 2. Incorporation of (+)- and (-)-[14C]6a-hydroxymaackiain into pisatin in cupric chloride-treated P. satisum pods*

Isomer fed	Pisatin produced (μg/g)	[α] _D (EtOH)†	Dilution	Incorporation (%)
(+)	124	+ 295°	120	25
(+)	92	+ 281°	61	34
(-)	100	$+235^{\circ}$	1350	1.4
(-)	84	$+170^{\circ}$	390	2.8

^{*}Induction period 12 hr, feeding period 36 hr.

Table 3. Incorporation of labelled isoflavonoids into pisatin in cupric chloride-treated P. sativum*

Compound	Tissue†	Pisatin produced (μg/g)	Dilution	Incorporation (%)
(3S)-[³ H]-7,2'-Dihydroxy-4',5'-methylenedioxyisoflavan	s	4 7	19 500	0.33
(3R)-[³ H]-7,2'-Dihydroxy-4',5'- methylenedioxyisoflavan [4- ¹⁴ C]-7,2'-Dihydroxy-4',5'-	S	54	22 900	0.31
methylenedioxyisoflav-3-ene	P	155	22 900	0.22

^{*}Induction period 12 hr, feeding period 36 hr.

[†]P, Pod; S, seedling.

 $[\]sharp [\alpha]_D (+)$ -pisatin, + 288.

 $^{^{\}dagger}[\alpha]_{D}$ (+)-pisatin, +288°.

[†]S, Seedling: P, pod.

cannot be regarded as particularly significant, but probably occur via the corresponding maackiain intermediates. The isoflavene, [4-14C]-7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene (12) was similarly a poor precursor of pisatin. Isoflav-3-enes appear to be important intermediates in the biosynthetic pathways to coumestans [7] but seem to play no role in the production of pterocarpans [7] and similarly 6a-hydroxypterocarpans.

Synthesis of labelled compounds

(-)-[¹⁴C]Maackiain was obtained by feeding 1-[U-¹⁴C]phenylalanine to cupric chloride-induced seedlings of red clover (*Trifolium pratense*), during which process approximately equal amounts of (-)-maackiain and (-)-medicarpin are produced as phytoalexins [8]. After partial purification of the pterocarpans by TLC, they were separated by gel filtration using Sephadex LH-20.

(+)-[3H]Maackiain was synthesized by base-catalysed exchange of unlabelled (+)-maackiain with tritiated water [9]. (+)-Maackiain is a component of several tropical heartwoods [10] and was isolated for these studies from Dalbergia oliveri [11]. The position of labelling was established by a similar experiment with (±)-maackiain and D2O, and 1H NMR analysis indicated exchange occurred ortho to the hydroxyl. The signal for H-4 (δ 6.36, d, J = 2.4 Hz) was reduced in intensity to ca9% of its normal value, indicating ca 91% deuteriation, and the signal for H-2 (δ 6.55, dd, J = 8.5, 2.4 Hz) collapsed to a doublet (J = 8.5 Hz). A reduction in intensity for this signal indicated some deuteriation at C-2, confirmed by a weak singlet at the centre of the H-1 doublet (δ 7.30, J = 8.5 Hz), possessing an intensity of ca 10 % of the H-1 signal. Thus, there is preferential exchange at H-4 and only much smaller exchange at H-2 under the conditions used. Unfortunately, the label introduced was not completely stable in the feeding experiments since (-)-[3H]maackiain prepared similarly and fed with an equal amount of (-)-[14C] maackiain showed a loss of up to 50% ³H relative to ¹⁴C. This, however, did not seriously affect the interpretation of results.

(+)-[14C]-6a-Hydroxymaackiain was obtained as earlier [1] by fungal demethylation of (+)-[14C] pisatin using cultures of Fusarium avenaceum [12]. The enantiomer (-)-[14C]-6a-hydroxymaackiain was prepared by fungal 6a-hydroxylation of (-)-[14C] maackiain using an isolate of Nectria haematococca [13]. Optical activity measurements confirm that this hydroxylation occurs with retention of configuration.

(3R)- and (3S)-[³H]-7,2'-Dihydroxy-4',5'-methylene-dioxyisoflavan (10 and 11, respectively) were synthesized by catalytic hydrogenolysis of (-)- and (+)-[³H]maackiain, respectively. The position of labelling would, thus, be mainly at H-8 with a little at H-6. [¹^C]-7,2'-Dihydroxy-4',5'-methylenedioxyisoflav-3-ene was obtained by acid treatment [14] of (\pm)-[11a-¹^C]maackiain synthesized for earlier experiments [1].

Biosynthesis of (+)- and (-)-pisatin

The results support the biosynthetic proposals published earlier [1, 4] (Scheme 1). Thus, (+)- and (-)-maackiain arise by reductive sequences from a common intermediate 7,2'-dihydroxy-4',5'-methylenedioxy-isoflavone (1). An overall Z reduction occurs in the case of (+)-pisatin (and hence (+)-maackiain), whereas an over-

all E reduction is assumed to take place for (-)-maackiain by analogy with results for (-)-medicarpin [15]. Since E reduction of α , β -unsaturated ketones appears to be the biological norm, e.g. ref. [16], it is perhaps possible that the 'overall' Z reduction in the case of pisatin arose by epimerization of the isoflavanone (6) produced by E reduction. The enantiomeric maackiains are then 6a-hydroxylated with retention of configuration and finally methylated to give (+)- and (-)-pisatins.

The 6a-hydroxylation of pterocarpans thus parallels the sequence employed by several micro-organisms in their metabolic detoxification of pterocarpan phytoalexins. Where data is available, the fungal 6a-hydroxylation similarly occurs with retention of configuration [17].

EXPERIMENTAL

General. Pea pods and seedlings, feeding techniques and isolation of pisatin were as reported earlier [1]. Labelled compounds were fed in ca 0.2 mg amounts. In double-labelling expts, inactive (+)- or (-)-maackiain was added to the precursor mixture to produce ³H: ¹⁴C ratios of ca 5 and 1:1 proportions of enantiomers (i.e. racemic mixtures) as appropriate. TLC was carried out using 0.5 mm layers of Si gel (Merck TLC-Kieselgel 60GF_{2x4}). Me₂CO was used for elution of TLC zones.

(+)-Maackiain. Fine shavings (30 g) of Dalbergia oliveri heartwood were extracted with boiling EtOH (6 × 300 ml). The combined extracts were evaporated to dryness and the residue purified by TLC (hexane-EtOAc, 3:2). The band corresponding to maackiain was eluted, and UV spectroscopy indicated both maackiain and medicarpin to be present. This material was rechromatographed (hexane-Me₂CO, 2:1), achieving some separation of the two compounds. The maackiain portion was further purified by gel filtration (Sephadex LH-20, column size 30 × 1.5 cm, eluting solvent EtOH, 12 ml/hr), medicarpin appearing in the 58-70 ml eluate and maackiain in the 68-81 ml eluate. Maackiain-containing fractions were bulked and rechromatographed until free from medicarpin. (+)-Maackiain was then recrystallized from aq. MeOH, yield 22 mg, mp 178-180°, lit. [18] 180-181°; [α]_D + 230° (EtOH; c 1.30).

 (\pm) -[2 H] Maackiain. A mixture of (\pm) -maackiain [8] (33 mg) in DMF (0.27 ml), D $_2$ O (0.17 ml) and Et $_3$ N (0.018 ml) in a Reactivial was flushed with N $_2$, then sealed and heated at 80° for 96 hr. The mixture was cooled, pipetted into MeOH-H $_2$ O (9:1, 5 ml), evaporated to dryness and purified by TLC (hexane-EtOAc, 3:2; hexane-Me $_2$ CO, 2:1) to yield (\pm) -[2 H] maackiain (20 mg). 1 H NMR, see Results and Discussion.

Radiochemicals. L-[U-\frac{1}{4}C]Phenylalanine (10 mCi/mM) and 3H_2O (140 mCi/mM) were purchased (Amersham). The syntheses of (\pm) -[11a-\frac{1}{4}C]maackiain (0.0426 mCi/mM) and (+)-[\frac{1}{4}C]-6a-hydroxymaackiain (0.0219 mCi/mM) have been described earlier [1].

(+)-[3 H]Maackiain. A mixture of (+)-maackiain (9.4 mg) in DMF (0.15 ml), H₂O (25 μ l), 3 H₂O (25 μ l, 100 mCi) and Et₃N (4.9 μ l) was heated as above for 45 hr. After work-up and purification by TLC (hexane EtOAc, 3:2; hexane-EtOAc-MeOH, 60:40:1; hexane-Me₂CO, 2:1), (+)-[3 H]maackiain (5.2 mg, sp. act. 21.2 mCi/mM) was obtained.

(-)-[³H]*Maackiain*. A similar procedure using (-)-maackiain [4] (11 mg) gave (-)-[³H]maackiain (6.3 mg, sp. act. 2.75 mCi/mM).

(-)- $[^{14}C]$ Maackiain. Seeds $(27\,g)$ of Trifolium pratense cv Essex were germinated on moist filter paper in the dark at 25° for 5 days. The seedlings were transferred to a large Petri dish $(15\,cm)$ and sufficient aq. $CuCl_2~(3\,mM)$ was added to cover the roots. The seedings were grown on in the light for $8\,hr$, then the inducer soln

Scheme 1. Biosynthesis of (+)- and (-)-pisatin in P. sativum.

was removed, the roots washed with $\rm H_2O$ and a soln of L-[U- ^{14}C]phenylalanine (50 μ Ci) in sufficient $\rm H_2O$ to just cover the roots was added. The seedlings were grown on in the light for 16 hr, then homogenized in a mortar with ground glass. The slurry was extracted with boiling EtOH (3 × 100 ml), the extracts combined, evaporated, treated with $\rm H_2O$ (50 ml) and extracted with Et₂O (100 ml, then 3 × 50 ml). The combined Et₂O extracts were evaporated and a mixture of (–)-maackiain and (–)-medicarpin was isolated and purified by TLC (hexane–EtOAc, 3:2; CHCl₃–MeOH, 25:1, hexane–Me₂CO, 2:1). (–)-[^{14}C]Maackiain was separated from [^{14}C]medicarpin by gel filtration (Sephadex LH-20, EtOH) as above. (–)-[^{14}C]Maackiain was further purified to constant sp. act. by TLC

[hexane-Me $_2$ CO, 2:1; C $_6$ H $_6$ -EtOAc-2-propanol, 90:10:1; C $_6$ H $_6$ -EtOAc-MeOH-petrol (60–80°), 6:4:1:3; C $_6$ H $_6$ -EtOAc-MeOH-petrol (60–80°), 6:4:1:6]. Yields ca 4 mg, sp. act. 0.005-0.015 mCi/mM.

(-)[14 C]-6a-Hydroxymaackiain. (-)-[14 C]Maackiain (4.1 mg, sp. act. 0.0108 mCi/mM) in 2-methoxyethanol (0.5 ml) was added to an actively growing culture of Nectria haematococca MPVI T-110 [13] in glucose-asparagine medium [19] (100 ml). The culture was incubated at 27° on a rotary shaker (120 rpm) for 86 hr, then extracted with Et₂O (5 × 100 ml) and the Et₂O extracts combined and evaporated. The residue was purified by TLC (CHCl₃-MeOH, 97:3; hexane-EtOAc-MeOH, 60:40:1; C_6H_6 -EtOAc-2-propanol, 90:10:1) to yield (-)-[14 C]-6a-

12

hydroxymaackiain 1.8 mg, sp. act. $0.0108\,\mathrm{mCi/mM}$, $\left[\alpha\right]_D - 328^\circ$ (EtOH; c 1.80), identical to (+)-6a-hydroxymaackiain [1], except optical rotation.

(3R)-[3 H]-7,2'-Dihydroxy-4',5'-methylenedioxyisoflavan. (-)-[3 H]Maackiain (1.3 mg, sp. act. 1.05 mCi/mM) was dissolved in EtOAc (10 ml) and hydrogenated over a Pd-C catalyst (10 %, 20 mg) at room temp. for 2 hr. The soln was filtered, the filtrate evaporated and purified by TLC [hexane-Me $_2$ CO, 2:1; C $_6$ H $_6$ -EtOAc-MeOH-petrol (60-80°), 6:4:1:6; hexane-EtOAc-MeOH, 60:40:1]. Yield 0.82 mg sp. act. 1.05 mCi/mM, mp 169-171°, UV $\lambda_{\rm max}^{\rm EIOH}$ nm: 289 (log ε 3.84), 298.

(3S)-[³H]-7,2'-Dihydroxy-4', 5'-methylenedioxyisoflavan. (+)-[³H]Maackiain (1.3 mg, sp. act. 1.15 mCi/mM) was hydrogenated as described above. Yield 0.80 mg sp. act. 1.15 mCi/mM, mp 172-174°.

[4.14C]-7,2'-Dihydroxy-4',5'-methylenedioxyisoftav-3-ene.(\pm)-[11a-14C]Maackiain (1.0 mg sp. act. 0.0426 mCi/mM) in EtOH (3 ml) was heated under reflux for 30 min with conc. HCl (0.1 ml). The mixture was cooled, concd, treated with H₂O (20 ml) and extracted with EtOAc (3 × 20 ml). The combined extracts were washed with H₂O (3 × 50 ml), evaporated and purified by TLC [hexane–Me₂CO, 2:1; hexane–EtOAc–MeOH, 60:40:1; C₆H₆-EtOAc–MeOH–petrol (60–80°), 6:4:1:6]. Yield 0.12 mg (calculated assuming no change in sp. act.). UV $\lambda_{\rm max}^{\rm EtOH}$ nm: 282 sh, 335.

Acknowledgements—We are grateful to Professor D. M. X. Donnelly (University College, Dublin) for a sample of (+)-maackiain, Dr. N. Tonanonta (Bangkok, Thailand) for Dalbergia oliveri wood, Dr. H. D. VanEtten (Cornell University, U.S.A.) for the culture of Nectria haematococca and the Science and Engineering Research Council for financial support.

REFERENCES

- Banks, S. W. and Dewick, P. M. (1982) Phytochemistry 21, 2235
- Pachler, K. G. R. and U. derwood, W. G. E. (1967) Tetrahedron 23, 1817.
- 3. DeMartinis, C., Mackay, M. F. and Poppleton, B. J. (1978) Tetrahedron 34, 1849.
- Banks, S. W. and Dewick, P. M. (1982) Phytochemistry 21, 1605.
- 5. Stoessl, A. (1972) Can. J. Biochem. 50, 107.
- 6. Dewick, P. M. and Martin, M. (1979) Phytochemistry 18, 591.
- Martin, M. and Dewick, P. M. (1980) Phytochemistry 19, 2341.
- 8. Dewick, P. M. (1975) Phytochemistry 14, 979.
- 9. Kirby, G. W. and Ogunkoya, L. (1965) J. Chem. Soc. C 1914.
- Dewick, P. M. (1982) in The Flavonoids: Advances in Research (Harborne, J. B. and Mabry, T. J., eds.) p. 535. Chapman & Hall, London.
- 11. Donnelly, D. M. X. and Kavanagh, P. J. (1974) Phytochemistry 13, 2587.
- 12. Lappe, U. and Barz, W. (1978) Z. Naturforsch. Teil C 33, 301.
- Denny, T. P. and Van Etten, H. D. (1982) Phytochemistry 21, 1023.
- Bevan, C. W. L., Birch, A. J., Moore, B. and Mukerjee, S. K. (1964) J. Chem. Soc. 5991.
- Banks, S. W., Steele, M. J., Ward, D. and Dewick, P. M. (1982)
 J. Chem. Soc. Chem. Commun. 157.
- Krezdorn, E., Höcherl, S. and Simon, H. (1977) Hoppe-Seyler's Z. Physiol. Chem. 358, 945 (and references therein).
- Ingham, J. L. and Markham, K. R. (1980) Phytochemistry 19, 1203.
- Shibata, S. and Nishikawa, Y. (1963) Chem. Pharm. Bull. 11, 167.
- VanEtten, H. D. and Stein, J. I. (1978) Phytopathology 68, 1276.